

Unit Outcomes:

After completing this unit, you should be able to:

* understand additional facts and principles about sets.
* apply rules of operations on sets and find the result.

4 demonstrate correct usage of Venn diagrams in set operations.
4 apply rules and principles of set theory to practical situations.

Main Contents

3.1 Ways to describe sets
3.2 The notion of sets
3.3 Operations on sets

Key Terms
Summary
Review Exercises

INTRODUCTION

In the present unit, you will learn more about sets. Particularly, you will discuss the different ways to describe sets and their representation through Venn diagrams. Also, you will discuss some operations that, when performed on two sets, give rise to another set. Finally, you will go through some practical problems related to our daily life and try to solve them, using the union and intersection of sets.

Historical Note:

George Cantor (1845-1918)
During the latter part of the $19^{\text {th }}$ century, while working with mathematical entities called infinite series, George Cantor found it helpful to borrow a word from common usage to describe a mathematical idea. The word he borrowed was set. Born in Russia, Cantor moved to Germany at the age of 11 and lived there for the rest of his life. He is known today as the originator of set theory.

3.1 WAYS TO DESCRIBE SETS

ACTIVITY 3.1

1 What is a set? What do we mean when we say an element of a set?
2 Give two members or elements that belong to each of the following sets:
a The set of composite numbers less than 10 .
b The set of natural numbers that are less than 50 and divisible by 3 .
c The set of whole numbers between 0 and 1 .
d The set of real numbers between 0 and 1 .
e The set of non-negative integers.
f The set of integers that satisfy $(x-2)(2 x+1)=2 x^{2}-3 x-2$.
3 a Describe each of the sets in Question 2 by another method.
b State the number of elements that belong to each set in Question 2.
c In how many ways can you describe the sets given in Question 2?
4 Which of the sets in Question 2 have
a no elements? b a finite number of elements?
c infinitely many elements?

3.1.1 Sets and Elements

Set: A Set is any well-defined collection of objects.
When we say that a set is well-defined, we mean that, given an object, we are able to determine whether the object is in the set or not. For instance, "The collection of all intelligent people in Africa" cannot form a well-defined set, since we may not agree on who is an "intelligent person" and who is not.
The individual objects in a set are called the elements or the members. Repeating elements in a set does not add new elements to the set.
For example, the set $\{a, a, a\}$ is the same as $\{a\}$.
Notation: Generally, we use capital letters to name sets and small letters to represent elements. The symbol ' ϵ ' stands for the phrase 'is an element of' (or 'belongs to'). So, $x \in \mathrm{~A}$ is read as ' x is an element of A' or ' x belongs to A'. We write the statement ' x does not belong to A ' as $x \notin \mathrm{~A}$.

Since the phrase 'the set of ' occurs so often, we use the symbol called brace (or curly bracket) \{ \}.

For instance, 'the set of all vowels in the English alphabet is written as $\{$ all vowels in the English alphabet $\}$ or $\{a, e, i, o, u\}$.

3.1.2 Description of Sets

A set may be described by three methods:

i Verbal method

We may describe a set in words. For instance,
a The set of all whole numbers less than ten or \{all whole numbers less than ten\}.
b The set of all natural numbers. This can also be written as \{all natural numbers\}.

ii The listing method (also called roster or enumeration method)

If the elements of a set can be listed, then we can describe the set by listing its elements. The elements can be listed completely or partially as illustrated in the following example:
Example 1 Describe (express) each of the following sets using the listing method:
a The set whose elements are $a, 2$ and 7 .
b The set of natural numbers less than 51.
The set of whole numbers.
d The set of non-positive integers.
e The set of integers.

Solution:

a First let us name the set by A. Then we can describe the set as

$$
\mathrm{A}=\{a, 2,7\}
$$

b The natural numbers less than 51 are $1,2,3, \ldots, 50$. So, naming the set as B we can express B by the listing method as

$$
B=\{1,2,3, \ldots, 50\}
$$

The three dots after the element 3 (called an ellipsis) indicate that the elements in the set continue in that manner up to and including the last element 50.
c Naming the set of whole numbers by \mathbb{W}, we can describe it as

$$
\mathbb{W}=\{0,1,2,3, \ldots\}
$$

The three dots indicate that the elements continue in the given pattern and there is no last or final element.
d If we name the set by L, then we describe the set as

$$
\mathrm{L}=\{\ldots,-3,-2,-1,0\}
$$

The three dots that precede the numbers indicate that elements continue from the right to the left in that pattern and there is no beginning element.
e You know that the set of integers is denoted by \mathbb{Z} and is described by

$$
\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2,3, \ldots\}
$$

We use the partial listing method, if listing all elements of a set is difficult or impossible but the elements can be indicated unambiguously by listing a few of them.

Exercise 3.1

1 Describe each of the following sets using a verbal method:
a $A=\{5,6,7,8,9\}$
b $\quad \mathrm{M}=\{2,3,5,7,11,13\}$
c $\quad G=\{8,9,10, \ldots\}$
d $E=\{1,3,5, \ldots, 99\}$

2 Describe each of the following sets using the listing method (if possible):
a The set of prime factors of 72 .
b The set of natural numbers that are less than 113 and divisible by 5 .
c The set of non-negative integers.
d The set of rational numbers between $\sqrt{2}$ and $\sqrt{8}$.
e The set of even natural numbers.
$f \quad$ The set of integers divisible by 3 .
g The set of real numbers between 1 and 3 .

iii The set-builder method (also known as method of defining property)

ACTIVITY 3.2

To each description given in column A , match a set that satisfies it from column B.

	\mathbf{A}
1	$2<x<10$ and $x \in \mathbb{N}$
2	$x=2 n$ and $n \in \mathbb{N}$
3	$2 x+4=0$ and x is an integer
4	$x \in \mathbb{N}$ and 12 is a multiple of x

B

a $\quad\{1,2,3,4,6,12\}$
b $\{-2\}$
c $\quad\{2,4,6, \ldots\}$
d $\quad\{3,4,5,6,7,8,9\}$
The above Activity leads you to the third useful method for describing sets, known as the set-builder method.
For example, $A=\{3,4,5,6,7,8,9\}$ can be described as

Note that "all x such that" may be written as " $x \mid$ "or " x :".
Hence we read the above as "set A is the set of all elements x such that x is a natural number between 2 and 10".

Note that in the above set A the properties that characterize the elements of the set are $x \in \mathbb{N}$ and $2<x<10$.
Example 2 Express each of the following sets using set-builder method:
a $\quad \mathbb{N}=\{1,2,3, \ldots\} \quad$ b $\quad \mathrm{A}=\{$ real numbers between 0 and 1$\}$
c $\quad B=\{$ integers divisible by 3$\}$ d The real solution set of $|x-1|=2$
Solution:
a $\quad \mathbb{N}=\{x \mid x \in \mathbb{N}\}$
b $\quad \mathrm{A}=\{x \mid x \in \mathbb{R}$ and $0<x<1\}$
Note that this set can also be expressed as $\mathrm{A}=\{x \in \mathbb{R} \mid 0<x<1\}$
$\mathrm{B}=\{x \mid x=3 n$, for some integer $n\}$ or $\mathrm{B}=\{3 n \mid n \in \mathbb{Z}\}$
d Naming the set by S, we write $S=\{x \mid x \in \mathbb{R}$ and $|x-1|=2\}$

Exercise 3.2

1 Which of the following collections are well defined? Justify your answer.
a $\quad\{x \mid x$ is an interesting bird $\}$.
b $\quad\{x \mid x$ is a good student $\}$.
c The set of natural numbers less than 100 .
d $\quad\{y \mid y$ is a factor of 13$\}$.

2 Which of the following are true and which are false?
a $2 \in\{-1,0,1\}$
b $a \notin\{\{a, c\}\}$
c $6 \in\{$ factors of 24$\}$

3 Describe each of the following sets by
i the listing method. ii the set-builder method.
a The set of letters in the word mathematics.
b The set of regional states in Ethiopia.
c The set of whole numbers between 5 and 13 .
d The set of even numbers less than 19.
e The set of students in Ethiopia.
f The set of all odd natural numbers.
4 Describe each of the following sets by
i a verbal method. ii the set-builder method.
a $\quad\{1,2,3, \ldots, 10\}$
b $\{1,3,5,7, \ldots\} \quad$ c
$\{5,10,15,20, \ldots\}$
d \{Tuesday, Thursday\}
e $\quad\{2,3,5,7,11, \ldots\}$

3.2 THE NOTION OF SETS

3.2.1 Empty Set, Finite Set, Infinite Set, Subset, Proper Subset

ACTIVITY 3.3

1 How many elements does each of the following sets have?
a $\quad \mathrm{A}=\{x \mid x$ is a real number whose square is negative one $\}$

b $\quad \mathrm{C}=\{x \mid x \in \mathbb{N}$ and $2<x<11\}$
c $\mathrm{D}=\{x \mid x \in\{1,2,3\}\}$
d $\mathrm{E}=\{x \mid x$ is an integer $\}$
e $\quad \mathrm{X}=\{2,4,6, \ldots\}$
2 Compare the sets C, D, E and X given in Question 1 above. Which set is contained in another?

Observe from the above Activity that a set may have no elements, a limited number of elements or an unlimited number of elements.

A Empty set

Definition 3.1

A set that contains no elements is called an empty set, or null set.
An empty set is denoted by either \varnothing or $\}$.

Example 1

a If $\mathrm{A}=\left\{x \mid x\right.$ is a real number and $\left.x^{2}=-1\right\}, \mathrm{A}=\varnothing$ (Why?)
b If $\mathrm{B}=\{x \mid x \neq x\}, \mathrm{B}=\varnothing$. (Why?)

B Finite and infinite sets

ACTIVITY 3.4

Which of the following sets have a finite and which have an infinite number of elements?

$1 \mathrm{~A}=\{x \mid x \in \mathbb{R}$ and $0<x<3\}$
$2 \mathrm{C}=\left\{x \in \mathbb{N} \mid 7<x<7^{100}\right\}$
$3 \mathrm{D}=\{x \in \mathbb{N} \mid x$ is a multiple of 3$\}$
$4 \mathrm{E}=\{x \in \mathbb{Z} \mid 2<x<3\}$
$5 \mathrm{M}=\left\{x \in \mathbb{N} \mid x\right.$ is divisible by 5 and $\left.x<101^{4}\right\}$
Your observations from the above Activity lead to the following definition:

Definition 3.2

i A set S is called finite, if it contains n elements where n is some nonnegative integer.
ii A set S is called infinite, if it is not finite.
Notation: If a set S is finite, then we denote the number of elements of S by $n(\mathrm{~S})$.
Example 2 If $\mathrm{S}=\{-1,0,1\}$, then $n(\mathrm{~S})=3$
Using this notation, we can say that a set S is finite if $n(\mathrm{~S})=0$ or $n(\mathrm{~S})$ is a natural number.

Example 3 Find $n(S)$ if:
a $S=\left\{x \in \mathbb{R} \mid x^{2}=-1\right\}$
b $\quad \mathrm{S}=\{x \in \mathbb{N} \mid x$ is a factor of 108$\}$

Solution:

a $\quad n(S)=0$
b $\quad n(\mathrm{~S})=12$

Example 4

a Let $\mathrm{E}=\{2,4,6, \ldots\} . \mathrm{E}$ is infinite.
b Let $\mathrm{T}=\{x \mid x$ is a real number and $0<x<1\}$. T is infinite.

C Subsets

ACTIVITY 3.5

What is the relationship between each of the following pairs of sets?
$1 \quad \mathrm{M}=\{$ all students in your class whose names begin with a
 vowel\};
$\mathrm{N}=\{$ all students in your class whose names begin with E$\}$
$2 \mathrm{~A}=\{1,3,5,7\} ; \mathrm{B}=\{1,2,3,4,5,6,7,8\}$
$3 \mathrm{E}=\{x \in \mathbb{R} \mid(x-2)(x-3)=0\} ; \mathrm{F}=\{x \in \mathbb{N} \mid 1<x<4\}$

Definition 3.3

Set A is a subset of set B, denoted by $A \subseteq B$, if each element of A is an element of B.

Note: If A is not a subset of B , then we denote this by $\mathrm{A} \nsubseteq \mathrm{B}$.

Example 5 Let $\mathbb{Z}=\{x \mid x$ is an integer $\} ; \mathbb{Q}=\{x \mid x$ is a rational number $\}$.
Since each element of \mathbb{Z} is also an element of \mathbb{Q}, then $\mathbb{Z} \subseteq \mathbb{Q}$
Example 6 Let $\mathrm{G}=\{-1,0,1,2,3\}$ and $\mathrm{H}=\{0,1,2,3,4,5\}$
$-1 \in \mathrm{G}$ but $-1 \notin \mathrm{H}$, hence $\mathrm{G} \nsubseteq \mathrm{H}$.

Note: For any set A

i $\quad \varnothing \subseteq \mathrm{A} \quad$ ii $\quad \mathrm{A} \subseteq \mathrm{A}$

Group Work 3.1

Given $\mathrm{A}=\{a, b, c\}$
1 List all the subsets of A .

2 How many subsets have you found?

From Group Work 3.1, you can make the following definition.

Definition 3.4

Let A be any set. The power set of A, denoted by $P(A)$, is the set of all subsets of A. That is, $P(A)=\{S \mid S \subseteq A\}$

Example 7 Let $M=\{-1,1\}$. Then subsets of M are $\varnothing,\{-1\},\{1\}$ and M.
Therefore $P(M)=\{\varnothing,\{-1\},\{1\}, M\}$

D Proper subset

Let $\mathrm{A}=\{-1,0,1\}$ and $\mathrm{B}=\{-2,-1,0,1\}$. From these sets, we see that $\mathrm{A} \subseteq \mathrm{B}$ but $\mathrm{B} \nsubseteq \mathrm{A}$. This suggests the definition of a proper subset stated below.

Definition 3.5

Set A is said to be a proper subset of a set B, denoted by $A \subset B$, if A is a subset of B and B is not a subset of A.

That is, $A \subset B$ means $A \subseteq B$ but $B \not \subset A$.

Note: For any set A, A is not a proper subset of itself.

ACTIVITY 3.6

Given $\mathrm{A}=\{-1,0,1\}$.
i List all proper subsets of A.
ii How many proper subsets of A have you found?
You will now investigate the relationship between the number of elements of a given set and the number of its subsets and proper subsets.

ACTIVITY 3.7

1 Find the number of subsets and proper subsets of each of the following sets:
a $\quad \mathrm{A}=\varnothing$
b
$B=\{0\}$
c $\quad \mathrm{C}=\{-1,0\}$
d $\mathrm{D}=\{-1,0,1\}$

2 Copy and complete the following table:

	Set	No. of elements	Subsets	No. of subsets	Proper subsets	No. of proper subsets
a	\varnothing	0	\varnothing	$1=2^{0}$	-	$0=2^{0}-1$
b	$\{0\}$	1	$\varnothing,\{0\}$	$2=2^{1}$	\varnothing	$1=2^{1}-1$
c	$\{-1,0\}$					
d	$\{-1,0,1\}$		$\varnothing,\{-1\},\{0\},\{1\},\{-1,0\}$,			$7=2^{3}-1$

You generalize the result of the above Activity in the form of the following fact.

Fact: If a set A is finite with n elements, then

i The number of subsets of A is 2^{n} and
ii The number of proper subsets of A is $2^{n}-1$.

Exercise 3.3

1 For each set in the left column, choose the sets from the right column that are subsets of it:

$$
\begin{array}{ll}
\text { i }\{a, b, c, d\} & \text { a }\} \\
\text { ii }\{o, p, k\} & \text { b }\{1,4,8,9\} \\
\text { iii Set of letters in the word "book" } & \text { c }\{o, k\} \\
\text { iv }\{2,4,6,8,10,12\} & \text { d }\{12\} \\
& \text { e }\{6\}
\end{array}
$$

2 a If $B=\{0,1,2\}$, find all subsets of B.
b If $B=\{0,\{1,2\}\}$, find all subsets of B.
3 State whether each of the following statements is true or false. If it is false, justify your answer.
a $\{1,4,3\} \subseteq\{3,4,1\}$
b $\quad\{1,3,1,2,3,2\} \nsubseteq\{1,2,3\}$
C $\quad\{4\} \subseteq\{\{4\}\}$
d $\varnothing \subseteq\{\{4\}\}$

3.2.2 Venn Diagrams, Universal Sets, Equal and Equivalent Sets

A Venn diagrams

ACTIVITY 3.8

1 What is the relationship between the following pairs of sets?
a $\quad \mathbb{W}=\{0,1,2, \ldots\}$ and $\mathbb{N}=\{1,2,3, \ldots\}$.
b $\quad \mathbb{W}=\{0,1,2, \ldots\}$ and $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2, \ldots\}$.
c $\quad \mathbb{N}=\{1,2,3, \ldots\}$ and $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2, \ldots\}$.
d $\mathbb{Z}=\{\ldots,-3,-2,-1,0,1,2, \ldots\}$ and $\mathbb{Q}=\left\{\frac{a}{b}: a, b \in \mathbb{Z}, b \neq 0\right\}$.
2 Express the relationship between each pair using a diagram.
3 Express the relationship of all the sets, $\mathbb{W}, \mathbb{N}, \mathbb{Z}$ and \mathbb{Q} using one diagram.
Compare your diagram with the one given in Activity 1.1 of Unit 1.
To illustrate various relationships that can arise between sets, it is often helpful to use a pictorial representation called a Venn diagram named after John Venn (1834-1883). These diagrams consist of rectangles and closed curves, usually circles. The elements of the sets are written in their respective circles.

For example, the relationship ' $\mathrm{A} \subset \mathrm{B}$ ' can be illustrated by the following Venn diagram.

Example 1 Represent the following pairs of sets using Venn diagrams:

Solution:

Figure 3.4
b

d

B Universal set

Suppose at a school assembly, the following students are asked to stay behind.
$\mathrm{G}=$ \{all Grade 9 students $\}.$
$\mathrm{I}=\{$ all students interested in a school play $\}$.
$\mathrm{R}=\{$ all class representatives of each class $\}$.
Each set G, I and R is a subset of $S=\{$ all students in the school $\}$
In this particular example, S is called the universal/set.
Similarly, a discussion is limited to a fixed set of objects and if all the elements to be discussed are contained in this set, then this "overall" set is called the universal set. We usually denote the universal set by U. Different people may choose different universal sets for the same problem.

Example 2 Let $\mathrm{R}=\{$ all red coloured cars in East Africa $\} ; \mathrm{T}=\{$ all Toyota cars in East Africa\}
i Choose a universal set U for R and T .
Draw a Venn diagram to represent the sets U, R and T .

Solution:

i There are different possibilities for U . Two of these are:

$$
\mathrm{U}=\{\text { all cars }\} \text { or } \mathrm{U}=\{\text { all wheeled vehicles }\}
$$

ii In both cases, the Venn diagram of the sets U, R and T is

Figure 3.6

Exercise 3.4

1 Draw Venn diagrams to illustrate the relationships between the following pairs of sets:
a $\quad \mathrm{A}=\{1,9,2,7,4\} ; \quad \mathrm{L}=\{4,9,8,2\}$
b $\quad \mathrm{B}=\{$ the vowels in the English alphabet $\}$
M $=$ \{the first five letters of the English alphabet $\}$
c $\quad \mathrm{C}=\{1,2,3,4,5\} ; \quad \mathrm{M}=\{6,9,10,8,7\}$
d $\quad \mathrm{F}=\{3,7,11,5,9\} ; \quad \mathrm{O}=\{$ all odd numbers between 2 and 12$\}$
2 For each of the following, draw a Venn diagram to illustrate the relationship between the sets:
a $\mathrm{U}=\{$ all animals $\}$;
C $=\{$ all cows $\} ;$
$\mathrm{G}=\{$ all goats $\}$
b $\quad \mathrm{U}=\{$ all people $\}$;
$\mathrm{M}=\{$ all males $\} ;$
$B=\{$ all boys $\}$

C Equal and equivalent sets

ACTIVITY 3.9

From the following pairs of sets identify those:
1 that have the same number of elements.
2 that have exactly the same elements.
a $\quad \mathrm{A}=\{1,2\} ; \mathrm{B}=\{x \in \mathbb{N} \mid x<3\}$
b $\quad \mathrm{E}=\{-1,3\} ; \mathrm{F}=\left\{\frac{1}{2}, \frac{1}{3}\right\}$
c $\quad \mathrm{R}=\{1,2,3\} ; \mathrm{S}=\{a, b, c\}$
d $\quad \mathrm{G}=\{x \in \mathbb{N} \mid x$ is a factor of 6$\} ; \quad \mathrm{H}=\{x \in \mathbb{N} \mid 6$ is a multiple of $x\}$
e $\quad \mathrm{X}=\{1,1,3,2,3,1\} ; \mathrm{Y}=\{1,2,3\}$

i Equality of sets

Let us investigate the relationship between the following two sets;

$$
\mathrm{E}=\{x \in \mathbb{R} \mid(x-2)(x-3)=0\} \text { and } \mathrm{F}=\{x \in \mathbb{N} \mid 1<x<4\} .
$$

By listing completely the elements of each set, we have $\mathrm{E}=\{2,3\}$ and $\mathrm{F}=\{2,3\}$.
We see that E and F have exactly the same elements. So they are equal.
Is $\mathrm{E} \subseteq \mathrm{F}$? Is $\mathrm{F} \subseteq \mathrm{E}$?

Definition 3.6

Given two sets A and B, if every element of A is also an element of B and if every element of B is also an element of A, then the sets A and B are said to be equal. We write this as $\mathrm{A}=\mathrm{B}$.

$$
\therefore \mathrm{A}=\mathrm{B}, \text { if and only if } \mathrm{A} \subseteq \mathrm{~B} \text { and } \mathrm{B} \subseteq \mathrm{~A} .
$$

Example 3 Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{1,4,2,3\}$.
$A=B$, since these sets contain exactly the same elements.
Note: If A and B are not equal, we write $\mathrm{A} \neq \mathrm{B}$.
Example 4 Let $\mathrm{C}=\{-1,3,1\}$ and $\mathrm{D}=\{-1,0,1,2\}$.

$$
\mathrm{C} \neq \mathrm{D} \text {, because } 2 \in \mathrm{D} \text {, but } 2 \notin \mathrm{C} \text {. }
$$

ii Equivalence of sets

Consider the sets $\mathrm{A}=\{a, b, c\}$ and $\mathrm{B}=\{2,3,4\}$. Even though these two sets are not equal, they have the same number of elements. So, for each member of set B we can find a partner in set A .

The double arrow shows how each element of a set is matched with an element of another set. This matching could be done in different ways, for example:

No matter which way we match the sets, each element of A is matched with exactly one element of B and each element of B is matched with exactly one element of A. We say that there is a one-to-one correspondence between A and B.

Definition 3.7

Two sets A and B are said to be equivalent, written as $A \leftrightarrow B$ (or $A \sim B$), if there is a one-to-one correspondence between them.
Observe that two finite sets A and B are equivalent, if and only if

$$
n(\mathrm{~A})=n(\mathrm{~B})
$$

Example 5 Let $\mathrm{A}=\{\sqrt{2}, e, \pi\}$ and $\mathrm{B}=\{1,2,3\}$.
Since $n(\mathrm{~A})=n(\mathrm{~B}), \mathrm{A}$ and B are equivalent sets and we write

$$
\mathrm{A} \leftrightarrow \mathrm{~B}
$$

Note that equal sets are always equivalent since each element can be matched with itself, but equivalent sets are not necessarily equal. For example,

$$
\{1,2\} \leftrightarrow\{a, b\} \text { but }\{1,2\} \neq\{a, b\} .
$$

Exercise 3.5

Which of the following pairs represent equal sets and which of them represent equivalent sets?
$1 \quad\{a, b\}$ and $\{2,4\}$
$2\{\varnothing\}$ and \varnothing
$3 \quad\{x \in \mathbb{N} \mid x<5\}$ and $\{2,3,4,5\}$
$4\{1,\{2,4\}\}$ and $\{1,2,4\}$
$5 \quad\{x \mid x<x\}$ and $\{x \in \mathbb{N} \mid x<1\}$

3.3 OPERATIONS ON SETS

There are operations on sets as there are operations on numbers. Like the operations of addition and multiplication on numbers, intersection and union are operations on sets.

3.3.1 Union, Intersection and Difference of Sets

A Union of sets

Definition 3.8

The union of two sets A and B, denoted by AUB and read "A union B" is the set of all elements that are members of set A or set B or both of the sets. That is, $\mathrm{A} \cup \mathrm{B}=\{x \mid x \in \mathrm{~A}$ or $x \in \mathrm{~B}\}$

The red shaded region of the diagram in the figure on the right represents $A \cup B$.
An element common to both sets is listed only once in the union. For example, if $\mathrm{A}=\{a, b, c, d, e\}$ and $\mathrm{B}=\{c, d, e, f, g\}$, then
$\mathrm{A} \cup \mathrm{B}=\{a, b, c, d, e, f, g\}$.

Example 1

a $\quad\{a, b\} \cup\{c, d, e\}=\{a, b, c, d, e\}$
b $\quad\{1,2,3,4,5\} \cup \varnothing=\{1,2,3,4,5\}$

Properties of the union of sets

ACTIVITY 3.10

Let $A=\{1,2,3,4\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\}$.
1 Find a $A \cup B$ b $B \cup A$

Figure 3.7

What is the relationship between $\mathrm{A} \cup B$ and $\mathrm{B} \cup \mathrm{A}$?
2 Find a $A \cup B$ b $(A \cup B) \cup C \quad$ c $\quad B \cup C \quad d \quad A \cup(B \cup C)$ What is the relationship between $(A \cup B) \cup C$ and $A \cup(B \cup C)$?

3 Find $A \cup \varnothing$, what is the relationship between $A \cup \varnothing$ and A ?
The above Activity leads you to the following properties:
For any sets A, B and C
1 Commutative property $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{BUA}$
2 Associative property $(A \cup B) \cup C=A \cup(B \cup C)$
3 Identity property

$$
\mathrm{A} \cup \varnothing=\mathrm{A}
$$

Exercise 3.6

1 Given $\mathrm{A}=\{1,2,\{3\}\}, \mathrm{B}=\{2,3\}$ and $\mathrm{C}=\{\{3\}, 4\}$, find:
a $\mathrm{A} \cup \mathrm{B}$
b $B \cup C$
c $\mathrm{A} U \mathrm{C}$
d $A \cup(B \cup C) \quad$ e $(A \cup B) \cup C$

2 State whether each of the following statements is true or false:
a If $x \in \mathrm{~A}$ and $x \notin \mathrm{~B}$, then $x \notin(\mathrm{AUB})$. b If $x \in(\mathrm{AUB})$ and $x \notin \mathrm{~A}$, then $x \in \mathrm{~B}$.
c If $x \notin \mathrm{~A}$ and $x \notin \mathrm{~B}$, then $x \notin(\mathrm{AUB})$. d For any set $\mathrm{A}, \mathrm{A} \cup \mathrm{A}=\mathrm{A}$.
e For any set $A, A \cup \varnothing=A$. f If $A \subseteq B$, then $A \cup B=B$.
g For any two sets A and $\mathrm{B}, \mathrm{A} \subseteq(\mathrm{A} U \mathrm{~B})$ and $\mathrm{B} \subseteq(\mathrm{A} U \mathrm{~B})$.
$h \quad$ For any three sets A, B and C, if $A \subseteq B$, and $B \subset C$, then $A \cup B=C$.
i For any three sets A, B and C , if $\mathrm{A} \cup \mathrm{B}=\mathrm{C}$, then $\mathrm{B} \subset \mathrm{C}$.
j If $A \cup B=\varnothing$, then $A=\varnothing$ and $B=\varnothing$.
3 Using copies of the Venn diagrams below, shade AUB.

a

b

C

d

Figure 3.8

B Intersection of sets

ACTIVITY 3.11

Consider the two sets $\mathrm{G}=\{2,4,6,8,10,12\}$ and $\mathrm{H}=\{1,2,3,4,5\}$.
a Draw a Venn diagram that shows the relationship between
 the two sets.
b Shade the region common to both sets and find their common elements.

Definition 3.9

The intersection of two sets A and B , denoted by $\mathrm{A} \cap \mathrm{B}$ and read as " A intersection $B^{\prime \prime}$, is the set of all elements common to both set A and set B . That is, $\mathrm{A} \cap \mathrm{B}=\{x \mid x \in \mathrm{~A}$ and $x \in \mathrm{~B}\}$.

Using the Venn diagram, $\mathrm{A} \cap \mathrm{B}$ is represented by the blue shaded region:

Example 2 Let $\mathrm{S}=\{a, b, c, d\}$ and $\mathrm{T}=\{f, b, d, g\}$. Then $\mathrm{S} \cap \mathrm{T}=\{b, d\}$.
Example 3 Let $\mathrm{V}=\{2,4,6, \ldots\}$ (multiples of 2) and

$$
W=\{3,6,9, \ldots\} \text { (multiples of } 3 \text {). }
$$

Then $\mathrm{V} \cap \mathrm{W}=\{6,12,18, \ldots\}$, that is, multiples of 6 .

Example 4 Let $\mathrm{A}=\{1,2,3\}$ and $\mathrm{B}=\{5,6,7,8\}$, then $\mathrm{A} \cap \mathrm{B}=\varnothing$.

Definition 3.10

Two or more sets are disjoint if they have no common element.
A and B are disjoint, if and only if $A \cap B=\varnothing$.
In the Venn diagram, the sets A and B are disjoint.

$$
\text { Here } \mathrm{A} \cap \mathrm{~B}=\varnothing
$$

Properties of the intersection of sets

Figure 3.10

ACTIVITY 3.12

Let $U=\{0,1,2,3,4,5,6,7,8,9\}$ be the universal set and let
$A=\{0,2,3,5,7\}, B=\{0,2,4,6,8\}$ and
$\mathrm{C}=\{x \mid x$ is a factor of 6$\}$
1 Find a $A \cap C$ b $C \cap A$
What is the relationship between $\mathrm{A} \cap \mathrm{C}$ and $\mathrm{C} \cap \mathrm{A}$?
2 Find a $A \cap B \quad b \quad(A \cap B) \cap C \quad c \quad B \cap C \quad d \quad A \cap(B \cap C)$ What is the relationship between $(A \cap B) \cap C$ and $A \cap(B \cap C)$?

3 Find $A \cap U$. What is the relationship between $A \cap U$ and A ?
The above Activity leads you to the following properties:
For any sets A, B and C and the universal set U
1 Commutative Property: $A \cap B=B \cap A$.
2 Associative Property:
3 Identity Property:

$$
\begin{aligned}
& (\mathrm{A} \cap \mathrm{~B}) \cap \mathrm{C}=\mathrm{A} \cap(\mathrm{~B} \cap \mathrm{C}) . \\
& \mathrm{A} \cap \mathrm{U}=\mathrm{A} .
\end{aligned}
$$

Exercise 3.7

1 Given $\mathrm{A}=\{a, b,\{c\}\}, \mathrm{B}=\{b, c\}$ and $\mathrm{C}=\{\{c\}, d\}$, find:
a $\mathrm{A} \cap \mathrm{B}$
b $\mathrm{A} \cap \mathrm{C}$
c $\quad \mathrm{B} \cap \mathrm{C}$
d $A \cap(B \cap C)$

2 State whether each of the following statements is true or false:
a If $x \in \mathrm{~A}$ and $x \notin \mathrm{~B}$, then $x \in(\mathrm{~A} \cap \mathrm{~B})$. b If $x \in(\mathrm{~A} \cap \mathrm{~B})$, then $x \in \mathrm{~A}$ and $x \in \mathrm{~B}$.
c If $x \notin \mathrm{~A}$ and $x \in \mathrm{~B}$, then $x \in(\mathrm{~A} \cap \mathrm{~B})$. d For any set $\mathrm{A}, \mathrm{A} \cap \mathrm{A}=\mathrm{A}$.
e If $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{A} \cap \mathrm{B}=\mathrm{A}$.
f For any two sets A and $\mathrm{B}, \mathrm{A} \cap \mathrm{B} \subseteq \mathrm{A}$ and $\mathrm{A} \cap \mathrm{B} \subseteq \mathrm{B}$.
g If $\mathrm{A} \cap \mathrm{B}=\varnothing$, then $\mathrm{A}=\varnothing$ or $\mathrm{B}=\varnothing$.
$h \quad$ If $(A \cup B) \subseteq A$, then $B \subseteq A$.
i If $A \subseteq B$, then $A \cap B=B$.
j If $A \subseteq B$, then $A \cap B=\varnothing$.
k If $\mathrm{A} \subseteq \mathrm{B}$, then $\mathrm{B}^{\prime} \subseteq \mathrm{A}^{\prime}$.
3 In each Venn diagram below, shade $(\mathrm{A} \cap \mathrm{B}) \cap \mathrm{C}$.

a

d

b

c

f

Figure 3.11

C Difference and symmetric difference of sets

i The relative complement (or difference) of two sets

Given two sets A and B, the complement of B relative to A (or the difference between A and B) is defined as follows.

Definition 3.11

The relative complement of a set B with respect to a set A (or the difference between A and B), denoted by A - B, read as "A difference B", is the set of all elements in A that are not in B.

That is, $\mathrm{A}-\mathrm{B}=\{x \mid x \in \mathrm{~A}$ and $x \notin \mathrm{~B}\}$.
Note: A - B is sometimes denoted by $\mathrm{A} \backslash \mathrm{B}$. (read as "A less B")
$A-B$ and $A \backslash B$ are used interchangeably.

Using a Venn diagram, A\B can be represented by shading the region in A which is not part of B.
$\mathrm{A} \backslash \mathrm{B}$ is shaded in light green.

Figure 3 , 12

Example 5 If $\mathrm{A}=\{x, y, z, w\}$ and $\mathrm{B}=\{a, b, x, y\}$, then find:
a the complement of B relative to A
b $\quad \mathrm{B} \backslash \mathrm{A}$
c $\mathrm{B} \backslash \mathrm{B}$

Solution:

a Note that finding "the complement of B relative to A " is the same as finding "the relative complement of B with respect to A ". That is $\mathrm{A} \backslash \mathrm{B}$.
$\mathrm{So}, \mathrm{A} \backslash \mathrm{B}=\{z, w\}$.
b $\quad \mathrm{B} \backslash \mathrm{A}=\{a, b\}$.
c $\quad \mathrm{B} \backslash \mathrm{B}=\varnothing$.

ACTIVITY 3.13

Let $A=\{0,2,3,5,7\}, B=\{0,2,4,6,8\}$ and $C=\{1,2,3,6\}$. Find:
a $\mathrm{A} \backslash \mathrm{B}$
b $\mathrm{B} \backslash \mathrm{A}$
c $(\mathrm{A} \backslash \mathrm{B}) \backslash \mathrm{C}$
d
$\mathrm{A} \backslash(\mathrm{B} \backslash \mathrm{C})$

From the results of the above Activity, we can conclude that the relative complement of sets is neither commutative nor associative.

ii The complement of a set

Let $\mathrm{U}=\{$ all human beings $\}$ and $\mathrm{F}=\{$ all females $\}$
The Venn diagram of these two sets is as shown. The yellow shaded region (in U but outside F) is called the complement of F, denoted by F'.

Figure 3.13

It represents all human beings who are not female. The members of F^{\prime} are all those members of U that are not members of F.

Definition 3.12

Let A be a subset of a universal set U. The complement (or absolute complement) of A , denoted by A^{\prime}, is defined to be the set of all elements of U that are not in A.

$$
\text { i.e., } \mathrm{A}^{\prime}=\{x \mid x \in \mathrm{U} \text { and } x \notin \mathrm{~A}\} \text {. }
$$

Using a Venn diagram, we can represent A' by the shaded region as shown in Figure 3.14.

Note that for any set A and universal set U ,

$$
\mathrm{A}^{\prime}=\mathrm{U} \backslash \mathrm{~A}
$$

Figure 3.14

Example 6 In copies of the Venn diagram on the right, shade
a $\mathrm{A} \backslash \mathrm{B}$
b $\quad(A \cap B)^{\prime}$
c $\mathrm{A} \cap \mathrm{B}^{\prime}$
d $A^{\prime} U B '$

Solution:

Figure 3.15

b First we shade the region $A \cap B$; then $(A \cap B)$ is the region outside $A \cap B$.

ii

$\mathrm{A} \cap \mathrm{B}$ is the shaded (blue) region.
$(\mathrm{A} \cap \mathrm{B})$ ' is the green shaded region.
C First we shade A with strokes that slant upward to the right (////) and shade B^{\prime} with strokes that slant downward to the right ((III).

Then $\mathrm{A} \cap \mathrm{B}$ ' is the cross-hatched region.

Note that the region of $\mathrm{A} \backslash \mathrm{B}$ is the same as the region of $\mathrm{A} \cap \mathrm{B}$ '.
d First we shade A^{\prime}, the region outside A , with strokes that slant upward to the right (IIII) and then shade B^{\prime} with strokes that slant downward to the right (IIII).

Then A'UB' is the total shaded region.

Figure 3.19
A^{\prime} or B^{\prime} are shaded

$\mathrm{A}^{\prime} \mathrm{UB}^{\prime}$ is shaded

Note that the region of $(\mathrm{A} \cap \mathrm{B})$ ' is the same as the region $\mathrm{A}^{\prime} \mathrm{UB}^{\prime}$.
Note: When we draw two overlapping circles within a universal set, four regions are formed. Every element of the universal set U is in exactly one of the following regions.

I in A and not in $\mathrm{B}(\mathrm{A} \backslash \mathrm{B})$
II in B and not in $\mathrm{A}(\mathrm{B} \backslash \mathrm{A})$
III in both A and B (A $\cap \mathrm{B})$
IV in neither A nor B ((AUB)')

Figure 3.20

From Activity 3.13 and the above examples, you generalize as follows:
For any two sets A and B , the following properties hold true:
$1 \quad \mathrm{~A} \backslash \mathrm{~B}=\mathrm{A} \cap \mathrm{B}^{\prime}$
$2(\mathrm{~A} \cap \mathrm{~B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
$3(\mathrm{~A} \backslash \mathrm{~B}) \cup \mathrm{B}=\mathrm{A} \cup \mathrm{B}$

ACTIVITY 3.14

1 In copies of the same Venn diagram used in Example 6, shade
a (AUB)'
b $A^{\prime} \cap B^{\prime}$

2 Generalize the result you got from Question 1.

Historical Note:

Augustus De Morgan (1806-1871)

Augustus De Morgan was the first professor of mathematics at University College London and a cofounder of the London Mathematical Society.
De Morgan formulated his laws during his study of symbolic logic. De Morgan's laws have applications in the areas of set theory, mathematical logic and the design of electrical circuits.

Group Work 3.2

1 Copy Figure 3.21 and shade the region that represents each of the following
a $\quad(\mathrm{AUB})^{\prime}$
b A'UB'
c $(\mathrm{A} \cap \mathrm{B})^{\prime}$
d $A^{\prime} \cap B^{\prime}$

Figure 3.21

2 Discuss what you have observed from Question 1
The above Group Work leads you to the following law called De Morgan's law.

Theorem 3.1 De Morgan's law

For any two sets A and B
$1(\mathrm{~A} \cap \mathrm{~B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime} \quad 2(\mathrm{~A} \cup \mathrm{~B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

Exercise 3.8

1 Given $\mathrm{A}=\{a, b, c\}$ and $\mathrm{B}=\{b, c, d, e\}$ find:
a the relative complement of A with respect to B .
b the complement of B relative to A.
C the complement of A relative to B.
2 In each of the Venn diagrams given below, shade $A \backslash B$.

a

b

C

d

Figure 3.22
3 Determine whether each of the following statements is true or false:
a If $x \in \mathrm{~A}$ and $x \notin \mathrm{~B}$ then $x \in(\mathrm{~B} \backslash \mathrm{~A})$
b If $x \in(\mathrm{~A} \backslash \mathrm{~B})$ then $x \in \mathrm{~A}$
c $B \backslash A \subseteq B$, for any two sets A and B

```
d \(\quad(A \backslash B) \cap(A \cap B) \cap(B \backslash A)=\varnothing\), for any two sets \(A\) and \(B\)
e If \(\mathrm{A} \backslash \mathrm{B}=\varnothing\) then \(\mathrm{A}=\varnothing\) and \(\mathrm{B}=\varnothing\)
f If \(\mathrm{A} \subseteq \mathrm{B}\) then \(\mathrm{A} \backslash \mathrm{B}=\varnothing\)
g If \(\mathrm{A} \cap \mathrm{B}=\varnothing\) then \((\mathrm{A} \backslash \mathrm{B})=\mathrm{A}\)
h \((A \backslash B) \cup B=A \cup B\), for any two sets \(A\) and \(B\)
i \(\quad \mathrm{A} \cap \mathrm{A}^{\prime}=\varnothing\)
```

4 Let $\mathrm{U}=\{1,2,3, \ldots, 8,9\}$ be the universal set and $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,4,6,8\}$ and $\mathrm{C}=\{3,4,5,6\}$. List the elements of each of the following:
a A^{\prime}
b B^{\prime}
c $\quad(\mathrm{AUC})^{\prime}$
d $\quad(\mathrm{A} \backslash \mathrm{B})^{\prime}$
e $A^{\prime} \cap B^{\prime} \quad$ f $\quad(A \cup B)^{\prime} \quad \mathbf{g} \quad\left(A^{\prime}\right)^{\prime} \quad$ h $\quad B \backslash C \quad$ i $\quad B \cap C^{\prime}$
iii The symmetric difference between two sets

ACTIVITY 3.15

Let $\mathrm{A}=\{a, b, d\}$ and $\mathrm{B}=\{b, d, e\}$. Then find:
a $\mathrm{A} \cap \mathrm{B}$
b $\quad \mathrm{A} \cup \mathrm{B}$
d $B \backslash A$
e $\quad(A \cup B) \backslash(A \cap B)$

Compare the results of e and f.
What can you conclude from your answers?
The result of the above Activity leads you to state the following definition.

Definition 3.13

Let A and B be any two sets. The symmetric difference between A and B , denoted by $\mathrm{A} \Delta \mathrm{B}$, is the set of all elements in $\mathrm{A} U B$ that are not in $\mathrm{A} \cap \mathrm{B}$. That is $\mathrm{A} \Delta \mathrm{B}=\{x \mid x \in(\mathrm{~A} \cup \mathrm{~B})$ and $x \notin(\mathrm{~A} \cap \mathrm{~B})\}$

$$
\text { or } \quad \mathrm{A} \Delta \mathrm{~B}=(\mathrm{A} \cup \mathrm{~B}) \backslash(\mathrm{A} \cap \mathrm{~B}) .
$$

Using a Venn diagram, $\mathrm{A} \Delta \mathrm{B}$ is illustrated by shading the region in $A \cup B$ that is not part of $A \cap B$ as shown.
$\mathrm{A} \Delta \mathrm{B}$ is the shaded dark brown region.
From Activity 3.15 and the above Venn diagram, you observe that

Figure 3.23

$$
\mathrm{A} \Delta \mathrm{~B}=(\mathrm{A} \cup \mathrm{~B}) \backslash(\mathrm{A} \cap \mathrm{~B})=(\mathrm{A} \backslash \mathrm{~B}) \cup(\mathrm{B} \backslash \mathrm{~A}) .
$$

Note: If $\mathrm{A} \cap \mathrm{B}=\varnothing$ then $\mathrm{A} \Delta \mathrm{B}=\mathrm{A} \cup \mathrm{B}$.

Example 7 Let $\mathrm{A}=\{-1,0,1\}$ and $\mathrm{B}=\{1,2\}$. Find $\mathrm{A} \Delta \mathrm{B}$.
Solution: $\quad \mathrm{A} \cup \mathrm{B}=\{-1,0,1,2\} ; \mathrm{A} \cap \mathrm{B}=\{1\}$

$$
\therefore \mathrm{A} \Delta \mathrm{~B}=(\mathrm{A} \cup \mathrm{~B}) \backslash(\mathrm{A} \cap \mathrm{~B})=\{-1,0,2\}
$$

Example 8 Let $\mathrm{A}=\{a, b, c\}$ and $\mathrm{B}=\{d, e\}$. Find $\mathrm{A} \Delta \mathrm{B}$.
Solution: $\quad \mathrm{A} \cup \mathrm{B}=\{a, b, c, d, e\} ; \mathrm{A} \cap \mathrm{B}=\varnothing$
$\therefore \mathrm{A} \Delta \mathrm{B}=(\mathrm{A} \cup \mathrm{B}) \backslash \varnothing=\mathrm{A} \cup \mathrm{B}=\{a, b, c, d, e\}$

Distributivity

Group Work 3.3

1 Given sets A, B and C, shade the region that represents each of the following
a $\quad \mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})$
b $\quad(A \cup B) \cap(A \cup C)$
c $\quad A \cap(B \cup C)$
d $\quad(A \cap B) \cup(A \cap C)$
2 Discuss what you have observed from Question 1.

Figure 3.24

As you may have noticed from the above Group Work, the following distributive properties are true:

Distributive properties

For any sets A, B and C
1 Union is distributive over the intersection of sets.
i.e., $\quad \mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup \mathrm{B}) \cap(\mathrm{A} \cup \mathrm{C})$.

2 Intersection is distributive over the union of sets.
i.e., $\quad \mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cap \mathrm{B}) \cup(\mathrm{A} \cap \mathrm{C})$.

Exercise 3.9

1 If $\mathrm{A} \cap \mathrm{B}=\{1,0,-1\}$ and $\mathrm{A} \cap \mathrm{C}=\{0,-1,2,3\}$, then find $\mathrm{A} \cap(\mathrm{B} \cup \mathrm{C})$.
2 Simplify each of the following by using Venn diagram or any other property.
a $A \cap(A \cup B)$
b $\quad P^{\prime} \cap(P U Q)$
c $A \cap\left(A^{\prime} \cup B\right)$
d $\mathrm{PU}(\mathrm{P} \cap \mathrm{Q})$

3.3.2 Cartesian Product of Sets

In this subsection, you will learn how to form a new set of ordered pairs from two given sets by taking the Cartesian product of the sets (named after the mathematician Rene Descartes).

Group Work 3.4

A six-sided die (a cube) has its faces marked with numbers $1,2,3,4,5$ and 6 respectively.

For example, $\mathrm{A}=\{(2,2),(2,4),(2,6),(4,2),(4,4),(4,6),(6,2),(6,4),(6,6)\}$.
The activity of this Groyp Work leads you to learn about the sets whose elements are ordered pairs.

Ordered pair

An ordered pair is an element (x, y) formed by taking x from one set and y from another set. In (x, y), we say that x is the first element and y is the second element.

Such a pair is ordered in the sense that (x, y) and (y, x) are not equal unless $x=y$.

Equality of ordered pairs

$$
(a, b)=(c, d), \text { if and only if } a=c \text { and } b=d
$$

Earlier also we haye discussed ordered pairs when we represented points in the Cartesian coordinate plane. A point P in the plane corresponds to an ordered pair (a, b) where a is the x-coordinate and b is the y-coordinate of the point P .

Example 1 A weather bureau recorded hourly temperatures as shown in the following table.

Time	9	10	11	12	1	2	3
Temp	61	62	65	69	68	72	76

This data enables us to make seven sentences of the form:
At x o'clock the temperature was y degrees.
That is, using the ordered pair (x, y),the ordered pair $(9,61)$ means.
At 9 o'clock the temperature was 61 degrees.
So the set of ordered pairs $\{(9,61),(10,62),(11,65),(12,69),(1,68),(2,72)$, $(3,76)\}$ are another form of the data in the table, where the first element of each pair is time and the second element is the temperature recorded at that time.

Definition 3.14

Given two non-empty sets A and B , the set of all ordered pairs (a, b) where $a \in \mathrm{~A}$ and $b \in \mathrm{~B}$ is called the Cartesian product of A and B , denoted by $\mathrm{A} \times \mathrm{B}$ (read "A cross B").

$$
\text { i.e., } \mathrm{A} \times \mathrm{B}=\{(a, b) \mid a \in \mathrm{~A} \text { and } b \in \mathrm{~B}\} \text {. }
$$

Note that the sets A and B in the definition can be the same or different.
Example 2 If $A=\{1,2,3\}$ and $B=\{4,5\}$, then

$$
A \times B=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}
$$

Example 3 Let $\mathrm{A}=\{a, b\}$, then form $\mathrm{A} \times \mathrm{A}$.
Solution: $\quad \mathrm{A} \times \mathrm{A}=\{(a, a),(a, b),(b, a),(b, b)\}$.
Example 4 Let $A=\{-1,0\}$ and $B=\{-1,0,1\}$.
Find $\mathrm{A} \times \mathrm{B}$ and illustrate it by means of a diagram.
Solution: $\quad \mathrm{A} \times \mathrm{B}=\{(-1,-1),(-1,0),(-1,1),(0,-1),(0,0),(0,1)\}$
The diagram is as shown in Figure 3.25.

Figure 3.25

Note: $n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) \times n(\mathrm{~B})$.

ACTIVITY 3.16

1 Let $\mathrm{A}=\{2,3\}$ and $\mathrm{B}=\{0,1,2\}$. Find:
a $\mathrm{A} \times \mathrm{B}$
b $\quad \mathrm{B} \times \mathrm{A}$
c $\quad n(\mathrm{~A} \times \mathrm{B})$

2 Let $\mathrm{A}=\{a, b\} \mathrm{B}=\{c, d, e\}$ and $\mathrm{C}=\{f, e, c\}$. Find:
a $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})$
b $\quad \mathrm{A} \times(\mathrm{B} \cup \mathrm{C})$
c $\quad(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
d $\quad(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$

From the result of the Activity, you conclude that:
For any sets A, B and C
i $\quad \mathrm{A} \times \mathrm{B} \neq \mathrm{B} \times \mathrm{A}$, for $\mathrm{A} \neq \mathrm{B} \quad$ Cartesian product of sets is not commutative.
ii $\quad n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) \times n(\mathrm{~B})=n(\mathrm{~B} \times \mathrm{A})$. where A and B are finite sets.
iii $\quad \mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$. Cartesian product is distributive over intersection.
iv $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$. Cartesian product is distributive over union.

Exercise 3.10

1 Given $\mathrm{A}=\{2\} \quad \mathrm{B}=\{1,5\} \quad \mathrm{C}=\{-1,1\}$ find:
a $\mathrm{A} \times \mathrm{B}$
b $\quad \mathrm{B} \times \mathrm{A}$
c $\quad \mathrm{B} \times \mathrm{C}$
d $\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})$
e $\quad(\mathrm{A} U \mathrm{C}) \times \mathrm{B} \quad \mathrm{f} \quad(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
g $\mathrm{B} \times \mathrm{B}$

2 If $B \times C=\{(1,1),(1,2),(1,3),(4,1),(4,2),(4,3)\}$, find:
a B
b C
C $\quad \mathrm{C} \times \mathrm{B}$

3 If $n(\mathrm{~A} \times \mathrm{B})=18$ and $n(\mathrm{~A})=3$ then find $n(\mathrm{~B})$.
4 Let $U=\{0,1,2,3,4,5,6,7,8,9\}$ be the universal set and $A=\{0,2,4,6,8,9\}$, $B=\{1,3,6,8\}$ and $C=\{0,2,3,4,5\}$. Find:
a $\quad \mathrm{A}^{\prime} \times \mathrm{C}^{\prime}$
b $\quad \mathrm{B} \times \mathrm{A}^{\prime}$
C $\quad \mathrm{B} \times\left(\mathrm{A}^{\prime} \backslash \mathrm{C}\right)$

5 If $(2 x+3,7)=(7,3 y+1)$, find the values of x and y.

3.3.3 Problems Involving Sets

In this subsection, you will learn how to solve problems that involye sets, in particular the numbers of elements in sets.

The number of elements that are either in set A or set B, denoted by $n(\mathrm{~A} \cup \mathrm{~B})$, may not necessarily be $n(\mathrm{~A})+n(\mathrm{~B})$ as we can see in the Figure 3.26.

Figure 3.26

In this figure, suppose the number of elements in the closed regions of the Venn diagram are denoted by x, y, z and w.

$$
\begin{aligned}
& n(\mathrm{~A})=x+y \text { and } n(\mathrm{~B})=y+z . \\
& \text { So, } n(\mathrm{~A})+n(\mathrm{~B})=x+y+y+z . \\
& n(\mathrm{~A} \cup \mathrm{~B})=x+y+z=n(\mathrm{~A})+n(\mathrm{~B})-y \\
& \text { i.e., } n(\mathrm{AUB})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{~B}) .
\end{aligned}
$$

Number of elements in (AUB)

For any finite sets A and B, the number of elements that are in $A \cup B$ is

$$
n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})-n(\mathrm{~A} \cap \mathrm{~B}) .
$$

Note: If $\mathrm{A} \cap \mathrm{B}=\varnothing$, then $n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B})$.
Example $1 \quad$ Explain why $n(\mathrm{~A}-\mathrm{B})=n(\mathrm{~A})-n(\mathrm{~A} \cap \mathrm{~B})$.
Solution: \quad From Figure 3.26 above, $n(\mathrm{~A})=x+y, n(\mathrm{~A} \cap \mathrm{~B})=y$

$$
n(\mathrm{~A})-n(\mathrm{~A} \cap \mathrm{~B})=(x+y)-y=x,
$$

x is the number of elements in A that are not in B . So, $n(\mathrm{~A}-\mathrm{B})=x$.

$$
\therefore n(\mathrm{~A}-\mathrm{B})=x=n(\mathrm{~A})-n(\mathrm{~A} \cap \mathrm{~B}) .
$$

For any finite sets A and B,

$$
n(\mathrm{~A} \backslash \mathrm{~B})=n(\mathrm{~A})-n(\mathrm{~A} \cap \mathrm{~B})
$$

Example 2 Among 1500 students in a school, 13 students failed in English, 12 students failed in mathematícs and 7 students failed in both English and Mathematics.
i How many students failed in either English or in Mathematics?
ii How many students passed both in English and in Mathematics?
Solution: Let E be the set of students who failed in English, M be the set of students who failed in mathematics and U be the set of all students in the school.

Then, $n(\mathrm{E})=13, n(\mathrm{M})=12, n(\mathrm{E} \cap \mathrm{M})=7$ and $n(\mathrm{U})=1500$.

$$
n(\mathrm{EUM})=n(\mathrm{E})+n(\mathrm{M})-n(\mathrm{E} \cap \mathrm{M})=13+12-7=18 .
$$

The set of all students who passed in both subjects is $U \backslash(E U M)$.

$$
n(\mathrm{U} \backslash(\mathrm{EUM}))=n(\mathrm{U})-n(\mathrm{EUM})=1500-18=1482 .
$$

Exercise 3.11

1 For $A=\{2,3, \ldots 6\}$ and $B=\{6,7, \ldots 10\}$ show that:
a $\quad n(\mathrm{AUB})=n(\mathrm{~A})+n$
(B) $-n(\mathrm{~A} \cap \mathrm{~B})$
b $\quad n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) \times n(\mathrm{~B})$
C $\quad n(\mathrm{~A} \times \mathrm{A})=n(\mathrm{~A}) \times n(\mathrm{~A})$

2 If $n(\mathrm{C} \cap \mathrm{D})=8$ and $n(\mathrm{C} \backslash \mathrm{D})=6$ then find $n(\mathrm{C})$.
3 Using a Venn diagram, or a formula, answer each of the following:
a Given $n(\mathrm{Q} \backslash \mathrm{P})=4, n(\mathrm{P} \backslash \mathrm{Q})=5$ and $n(\mathrm{P})=7$ find $n(\mathrm{Q})$.
b If $n\left(\mathrm{R}^{\prime} \cap \mathrm{S}^{\prime}\right)+n\left(\mathrm{R}^{\prime} \cap \mathrm{S}\right)=3, n(\mathrm{R} \cap \mathrm{S})=4$ and $n\left(\mathrm{~S}^{\prime} \cap \mathrm{R}\right)=7$, find $n(\mathrm{U})$.
4 Indicate whether the statements below are true or false for all finite sets A and B. If a statement is false give a counter example.
a $\quad n(\mathrm{~A} \cup \mathrm{~B})=n(\mathrm{~A})+n(\mathrm{~B}) \quad \mathrm{b} \quad n(\mathrm{~A} \cap \mathrm{~B})=n(\mathrm{~A})-n(\mathrm{~B})$
c If $n(\mathrm{~A})=n(\mathrm{~B})$ then $\mathrm{A}=\mathrm{B} \quad \mathrm{d} \quad$ If $\mathrm{A}=\mathrm{B}$ then $n(\mathrm{~A})=n(\mathrm{~B})$
e $\quad n(\mathrm{~A} \times \mathrm{B})=n(\mathrm{~A}) \cdot n(\mathrm{~B}) \quad \mathrm{f} \quad n(\mathrm{~A})+n(\mathrm{~B})=n(\mathrm{AUB})-n(\mathrm{~A} \cap \mathrm{~B})$
$\mathrm{g} \quad n\left(\mathrm{~A}^{\prime} \cup \mathrm{B}^{\prime}\right)=n\left((\mathrm{~A} \cup \mathrm{~B})^{\prime}\right) \quad \mathrm{h} \quad n(\mathrm{~A} \cap \mathrm{~B})=n(\mathrm{~A} \cup \mathrm{~B})-n\left(\mathrm{~A} \cap \mathrm{~B}^{\prime}\right)-n\left(\mathrm{~A}^{\prime} \cap \mathrm{B}\right)$
i $\quad n(\mathrm{~A})+n\left(\mathrm{~A}^{\prime}\right)=n(\mathrm{U})$
$5 \quad$ Suppose A and B are sets such that $n(\mathrm{~A})=10, n(\mathrm{~B})=23$ and $n(\mathrm{~A} \cap \mathrm{~B})=4$, then find:
a $n(\mathrm{~A} \cup \mathrm{~B}) \quad \mathbf{b} \quad n(\mathrm{~A} \backslash \mathrm{~B}) \quad \mathbf{c} \quad n(\mathrm{~A} \Delta \mathrm{~B}) \quad$ d $n(\mathrm{~B} \backslash \mathrm{~A})$

6 If $\mathrm{A}=\left\{x \mid x\right.$ is a non-negative integer and $\left.x^{3}=x\right\}$, then how many proper subsets does A have?

7 Of 100 students, 65 are members of a mathematics club and 40 are members of a physics club. If 10 are members of neither club, then how many students are members of:
a both clubs?
b only the mathematics club?
c only the physics club?
8 The following Venn diagram shows two sets A and B. If $n(A)=13, n(B)=8$, then find:
a $n(\mathrm{~A} \cup \mathrm{~B})$
b $\quad n(\mathrm{U})$
c $n(\mathrm{~B} \backslash \mathrm{~A})$
d $n\left(A \cap B^{\prime}\right)$

Figure 3.27

Key Terms

complement	infinite set	set
disjoint sets	intersection of sets	subset
element	power set	symmetric difference between sets
empty set	proper subset	union of sets
finite set	relative complement	universal set

1 A set is a well-defined collection of objects. The objects of a set are called its elements (or members).
2 Sets are described in the following ways:
a Verbal method
b Listing method
i Partial listing method
ii Complete listing method
c Set-builder method
3 The universal set is a set that contains all elements under consideration in a discussion.

4 The complement of a set A is the set of all elements that are found in the universal set but not in A.

5 A set S is called finite if and only if it is the empty set or has exactly n elements, where n is a natural number. Otherwise, it is called infinite.
$6 \quad A$ set A is a subset of B if and only if each element of A is in set B.
7 i $\quad \mathrm{P}(\mathrm{A})$, the power set of a set A , is the set of all subsets of A .
ii If $n(\mathrm{~A})=n$, then the number of subsets of A is 2^{n}.
8 Two sets A and B are said to be equal if and only if $A \subseteq B$ and $B \subseteq A$.
9 Two sets A and B are said to be equivalent if and only if there is a one-to-one correspondence between their elements.

10 i A set A is a proper subset of set B , denoted by $\mathrm{A} \subset \mathrm{B}$, if and only if $\mathrm{A} \subseteq \mathrm{B}$ and $\mathrm{B} \nsubseteq \mathrm{A}$.
ii If $n(\mathrm{~A})=n$, then the number of proper subsets of A is $2^{n}-1$.

11 Operations on sets; for any sets A and B ,
i $\quad \mathrm{A} \cup \mathrm{B}=\{x \mid x \in \mathrm{~A}$ or $x \in \mathrm{~B}\}$.
ii $\quad \mathrm{A} \cap \mathrm{B}=\{x \mid x \in \mathrm{~A}$ and $x \in \mathrm{~B}\}$.
iii $\quad \mathrm{A}-\mathrm{B}($ or $\mathrm{A} \backslash \mathrm{B})=\{x \mid x \in \mathrm{~A}$ and $x \notin \mathrm{~B}\}$.
iv $\quad \mathrm{A} \Delta \mathrm{B}=\{x \mid x \in(\mathrm{~A} \cup \mathrm{~B})$ and $x \notin(\mathrm{~A} \cap \mathrm{~B})\}$.
v $\mathrm{A} \times \mathrm{B}=\{(a, b) \mid a \in \mathrm{~A}$ and $b \in \mathrm{~B}\}$.
12 Properties of union, intersection, symmetric difference and Cartesian product:
For all sets A, B and C:
i Commutative properties
a $\quad \mathrm{A} \cup \mathrm{B}=\mathrm{BUA}$
b $\quad \mathrm{A} \cap \mathrm{B}=\mathrm{B} \cap \mathrm{A}$
c $\quad \mathrm{A} \Delta \mathrm{B}=\mathrm{B} \Delta \mathrm{A}$
ii Associative properties
a $\quad \mathrm{A} \cup(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \cup$
B) $\cup \mathrm{C}$
C $\quad \mathrm{A} \Delta(\mathrm{B} \Delta \mathrm{C})=(\mathrm{A} \Delta \mathrm{B}) \Delta \mathrm{C}$
b $\quad A \cap(B \cap C)=(A \cap B) \cap C$
iii Identity properties
a $\quad \mathrm{A} \cup \varnothing=\mathrm{A}$
b $\quad A \cap U=A$
(U is a universal set)
iv Distributive properties
a $\quad \mathrm{A} \cup(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \cup B) \cap(\mathrm{A} \cup \mathrm{C})$
b $\quad A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
c $\quad \mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
d $\quad \mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
v De Morgan's Law
a $\quad(\mathrm{A} \cup \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime} \quad$ b $\quad(\mathrm{A} \cap \mathrm{B})^{\prime}=\mathrm{A}^{\prime} \cup \mathrm{B}^{\prime}$
vi For any set A
a $\quad \mathrm{A} U \mathrm{~A}^{\prime}=\mathrm{U}$
b $\quad\left(\mathrm{A}^{\prime}\right)^{\prime}=\mathrm{A}$
c $\quad \mathrm{A} \cap \mathrm{A}^{\prime}=\varnothing$
d $A \times \varnothing=\varnothing$

Review Exercises on Unit 3

1 Which of the following are sets?
a The collection of all tall students in your class.
b The collection of all natural numbers divisible by 3 .
c The collection of all students in your school.
d The collection of all intelligent students in Ethiopia.
e The collection of all subsets of the set $\{1,2,3,4,5\}$.

2 Rewrite the following statements, using the correct notation:
a $\quad \mathrm{B}$ is a set whose elements are x, y, z and w.
b 3 is not an element of set B.
c D is the set of all rational numbers between $\sqrt{2}$ and $\sqrt{5}$.
d $\quad \mathrm{H}$ is the set of all positive multiples of 3 .
3 Which of the following pairs of sets are equivalent?
a $\quad\{1,2,3,4,5\}$ and $\{m, n, o, p, q\}$
b $\quad\{x \mid x$ is a letter in the word mathematics $\}$ and $\{y \in \mathbb{N} \mid 1 \leq y \leq 11\}$
c $\quad\{a, b, c, d, e, f, \ldots m\}$ and $\{1,2,3,4,5, \ldots 13\}$
4 Which of the following represent equal sets?
$\mathrm{A}=\{a, b, c, d\} \quad \mathrm{B}=\{x, y, z, w\}$
$\mathrm{C}=\{x \mid x$ is one of the first four letters in the English alphabet $\}$
$\mathrm{D}=\varnothing \quad \mathrm{E}=\{0\} \quad \mathrm{F}=\{x \mid x \neq x\} \quad \mathrm{G}=\{x \in \mathbb{Z} \mid-1<x<1\}$
5 If $\mathrm{U}=\{a, b, c, d, e, f, g, h\}, \quad \mathrm{A}=\{b, d, f, h\}$ and $\mathrm{B}=\{a, b, e, f, g, h\}$, find the following:
a A^{\prime}
b B'
c $\mathrm{A} \cap \mathrm{B}$
d $\quad(A \cap B)^{\prime}$
e
$\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}$

6 In the Venn diagram given below, write the region labelled by I, II, III and IV in terms of A and B.

Figure 3.28

7 For each of Questions a, b and c, copy the following Venn diagram and shade the regions that represent:
a $A \cap(B \cap C)$.
b $\quad \mathrm{A} \backslash(\mathrm{B} \cap \mathrm{C})$.
c $\quad \mathrm{A} U(\mathrm{~B} \backslash \mathrm{C})$.

8 Let $\mathrm{U}=\{0,1,2,3,4,5,6,7,8,9\}, \mathrm{A}=\{1,2,3,4,5\}$,

$$
B=\{0,2,1,6,8\} \text { and } \quad C=\{3,6,9\} . \text { Then find: }
$$

Figure 3.29
a A^{\prime}
b
B\A
c $\quad \mathrm{A} \cap \mathrm{C}^{\prime}$
d $\mathrm{C} \times(\mathrm{A} \cap \mathrm{B})$
e $\quad(\mathrm{B} \backslash \mathrm{A}) \times \mathrm{C}$

9 Suppose B is a proper subset of C,
a If $n(C)=8$, what is the maximum number of elements in B ?
b What is the least possible number of elements in B ?
10 If $n(\mathrm{U})=16, n(\mathrm{~A})=7$ and $n(\mathrm{~B})=12$, find:
a $n\left(\mathrm{~A}^{\prime}\right)$
c greatest $n(\mathrm{~A} \cap \mathrm{~B})$
b $\quad n\left(\mathrm{~B}^{\prime}\right)$
c gratest n (A B \quad d least $n(A \cup B)$

11 In a class of 31 students, 22 students study physics, 20 students study chemistry and 5 students study neither. Calculate the number of students who study both subjects.

12 Suppose A and B are sets such that AUB has 20 elements, A $\cap B$ has 7 elements, and the number of elements in B is twice that of A. What is the number of elements in:
a A.
b $\quad B$?

13 State whether each of the following is finite or infinite:
a $\quad\{x \mid x$ is an integer less than 5$\}$
b $\quad\{x \mid x$ is a rational number between 0 and 1$\}$
c $\quad\{x \mid x$ is the number of points on a 1 cm -long line segment $\}$
d The set of trees found in Addis Ababa.
e The set of "teff" in 1,000 quintals.
f The set of students in this class who are 10 years old.
14 How many letters in the English alphabet precede the letter v ? (Think of a shortcut method).
15 Of 100 staff members of a school, 48 drink coffee, 25 drink both tea and coffee and everyone drinks either coffee or tea. How many staff members drink tea?

16 Given that set A has 15 elements and set B has 12 elements, determine each of the following:
a The maximum possible number of elements in AUB.
b The minimum possible number of elements in AUB.
c The maximum possible number of elements in $A \cap B$.
d The minimum possible number of elements in $A \cap B$.

